Velocity relaxation of a particle in a confined compressible fluid.
نویسندگان
چکیده
The velocity relaxation of an impulsively forced spherical particle in a fluid confined by two parallel plane walls is studied using a direct numerical simulation approach. During the relaxation process, the momentum of the particle is transmitted in the ambient fluid by viscous diffusion and sound wave propagation, and the fluid flow accompanied by each mechanism has a different character and affects the particle motion differently. Because of the bounding walls, viscous diffusion is hampered, and the accompanying shear flow is gradually diminished. However, the sound wave is repeatedly reflected and spreads diffusely. As a result, the particle motion is governed by the sound wave and backtracks differently in a bulk fluid. The time when the backtracking of the particle occurs changes non-monotonically with respect to the compressibility factor ε = ν∕ac and is minimized at the characteristic compressibility factor. This factor depends on the wall spacing, and the dependence is different at small and large wall spacing regions based on the different mechanisms causing the backtracking.
منابع مشابه
Diffusion and velocity relaxation of a Brownian particle immersed in a viscous compressible fluid confined between two parallel plane walls.
The diffusion tensor and velocity correlation function of a Brownian particle immersed in a viscous compressible fluid confined between two parallel plane walls are calculated in point approximation. The fluid is assumed to satisfy stick boundary conditions at the walls. It is found that the velocity correlation function decays asymptotically with a negative t(-2) long-time tail due to coupling...
متن کاملA MODIFIED COMPRESSIBLE SMOOTHED PARTICLE HYDRODYNAMICS (MCSPH) METHOD AND ITS APPLICATION ON THE NUMERICAL SIMULATION OF LOW AND HIGH VELOCITY IMPACTS
In this study a Modified Compressible Smoothed Particle Hydrodynamics (MCSPH) method is introduced which is applicable in problems involve shock wave structures and elastic-plastic deformations of solids. As a matter of fact, algorithm of the method is based on an approach which descritizes the momentum equation into three parts and solves each part separately and calculates their effects on th...
متن کاملDirect numerical simulation of dispersed particles in a compressible fluid.
We present a direct numerical simulation method for investigating the dynamics of dispersed particles in a compressible solvent fluid. The validity of the simulation is examined by calculating the velocity relaxation of an impulsively forced spherical particle with a known analytical solution. The simulation also gives information about the fluid motion, which provides some insight into the par...
متن کاملNumerical Simulation of Fluid Flow Past a Square Cylinder Using a Lattice Boltzmann Method
The method of lattice boltzmann equation(LBE) is a kinetic-based approach for fluid flow computations. In the last decade, minimal kinetic models, and primarily the LBE, have met with significant success in the simulation of complex hydrodynamic phenomena, ranging from slow flows in grossly irregular geometries to fully developed turbulence, to flow with dynamic phase transitions. In the presen...
متن کاملشبیهسازی عددی شکست موج تنها بر روی ساحل شیبدار به روش هیدرودینامیک ذرات هموار نسبتاً تراکمپذیر
In this article, a numerical meshless method called Weakly Compressible Smoothed Particle Hydrodynamic (WCSPH) is used to simulate the solitary wave breaking process on the beach. The present model is a two dimensional model that considers the fluid weakly compressibility. This model solves the viscous fluid equations to obtain velocity field and density and solves the equation of state to obta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 138 18 شماره
صفحات -
تاریخ انتشار 2013